Warning: file_put_contents(images/spider/-bwin-freebet-2025-01-12-id-15410.pdf.log): failed to open stream: File too large in /hermes/bosnacweb04/bosnacweb04bg/b1819/sl.leftohio/public_html/kellygoodrich/wp_config.php on line 101
JVBERi0xLjQKJeLjz9MKNCAwIG9iago8PC9TdWJ0eXBlL0xpbmsvUmVjdFszNiA0ODcuMTYgMTM4LjcxIDQ5OC4yNl0vQTw8L1MvVVJJL1VSSShodHRwczovL3d3dy5kaW1lbi5jb20uYnIvam9nby1kZS1jYXJyby1ncuF0aXMtMjAyNS0wMi0yNy1pZC0zMTM5Mi5wZGYpPj4vQm9yZGVyWzAgMCAwXS9DWzAgMCAxXT4+CmVuZG9iago1IDAgb2JqCjw8L0xlbmd0aCAxODE0L0ZpbHRlci9GbGF0ZURlY29kZT4+c3RyZWFtCniclVhNc9tGEr3zV7RPoqtImOC3dNmSHDu7e3BVJO1NlyHYJMcGMNAMQDvZX7fH/RdR6eBSqnLy7iWnfT0DWCZIJJuSRACcmf58/bqh+959L45m9LE3imaj+HxO7ev1973JnBazWRSPKevNZufNQ9q76f2A81e3vZhG+IlpFtNiMpHF26z36u2Y5G7T68fRy9v3vTe3p/bHi+P949/ZP4qP90+e94eNsHoULcQvGD9dLqN4CuPjyTJaxM2z2D+i7yH8Y6MHm5ejOd2usTAcL6Ol3L56G9N4KnqCGXbb668+6pw2lnnFpage0dZrDifjeTTyR58P0PGueRD+1Yl6y8HywZcwaDIV6X6lbcIwLP/BTrqoCpKrM/n2zxxThXGlcqTKlEudGPpEhUoz1la5thwJwTQ6nzbRi5enHBzH0WlPRsdS2mexMG2F75pdlZmLrn1xve90DumC3qrPCi7Zkmmt6L2xucJ1r0tjtXGKOKMPnKY/bo1ZW53sosRkL+iat9qVloeOaWfeM/EJONRGPKveqnzHVGW0+k9eOWJXcKJVKuoV6ayoUqdNriy5SiFTsOnFCQCdCEJi8pLx2xGG/m+5TuAU/0SJeJc9GlozbS18j+iG6SAmsiqWKjsgRQEAhGhsda7SAVCUEWJgsHbp1zp0ltoNyLGFtEJtjYvotXKG5kfKHBVsE5UNaG+SX8h9kec124ev2l2jXkPKZYc+9XvG7C3TVaqSD+Hz7/h7QUN6vTNJqT6KZTqHIUl4RrDC8wVtU7NS6bBUq5SHW5Wxi7r0Q/i7RzPoWPY5nlPlkN6fD2Ow1g6268+PBsmojkJOZ6mG/WeUI5RO4rLmvUn3Gpls+1uTmHChAO692fpMJ8paJNU+ICndgOo3Bn3gXOWAwHTd4cwVZ8O9ztfmrq/uXpKC7EoraNroXJd6D6VIWsbpzlhGWJXDI+xo0rkG9AFvvcf9FZeT+Qx5va80afvgOnTiTGJWVlsqq7UhQ/cVU2FRQbVwcmrFNhQTAMqfEekmmFa+QfC2lVU5Cp5RYgk7Z7qyiaJ4clKqqlD6E4oSKmFyY7kh0W0SiJNdijbGZkIWJpEKzoVNYFEpdGIJSJJMgEURsy6IZkA3cS6ZlVJG8TSmo+AO8VLbgMIx0AJIiJ+IJhCBZ1TPhnWpQiRKjcKD711qQ/gHsJVzGOiDAnHiE7IDKQC9ZJZM8fm//G0WB6TzJK0EBrSpSl4ZYQflkJfw0EUMT7l4SlkFkqXMF/VrEJjOBfuUwp1gus8nVPrIOOQeRvioexs74MQdWj1lSbwcQmIlKZQ9fNLyJchfrwWyDRa7SpjttspLdSEBFWFiBlnfCpQdZkx5I+IvHSKsWOpExHVzrPzmGD3R5iHRKaJjHwoYFdGVT8JeO2RUggEK0DhiNlpax4CSFGwlC7mhlSkfTYfms0bhGYRL3XCe7DhIFPBW6QMani8TAKtk9CegyZMz3JQkdfToP9npjyaR/6ftj2bRYnHy4Q+s8LPhN5MkJr0xEozL4ST5HRdGe3CjoTcZRaD2bPVGAgxgHnih1yhSX28DSYnAzwH05gMllteSqwdfQ9KZfel9a8FsFJ17CwSVdIlksi2ldFdGOU+syudzDU4VztLgg4h+drQQkGbozY8vYKs32bOg8e3SAznRRaCMf7a1TubRLGg98KTuNgdldBM6/E1VoARLwUgl3xSYAQOdWQZbA4iCDylVlPuRl+NxFAd9pcpWT9ndy4je+MYGdznhegoSVtW5S6w0QN/9G1KzrCUW2s8suWckTDCyv3KVoLUZ/1sJBkDGy1aC/113o2Cu9NFqo36CEhFbh8C3WR+6w1yrVEgGxLNSK536pEuw9kIaoZW3XI/PR9HSW9BvRTm04KaTe+Xf1c3c3DJmrhPqM2kHPs/3FTqLp0xpq22li3k0DUqPrB2EM2F6aCHZU1Luvm5+JlZQsd5iQBzSjc5OxzqenUd4NTyMNXonLMAMiw9O2bcNB49xv/11z7rGjGoFRTwUXKy4ksET/QZnzv4hA9PqC5DS9neK11Gvul8LTs/AnwrU5hAxYGZwa0RmQ4x018etKoQw/YwSqlaKFjOM33d2mZYsLftMNiv6l2XpfW3NE7xkBs2lVRgPd4Ze0Tu15y0Y00qxHCp68ynZYaBiqPGeo5FkGJOkB1WhkwGONfxCTDqiHU+i87gV7b8GollrqSqZbVxVSgfJy6/SbEPrNXLqynPAGljki9QxBRsK+6VAYbUcPkeSvdr+WuMNRlsT/QAoAv5H1eNfHAZe1nN4parTnbxgAX6G0iqxvt3WJ9nXQ1vpEukNSmFxhRIMLfoEd0V4kypVguvfpCM/CenuMBfiAHIIBvkNr2paBU4Ti9/47TKtt3QuRvKPAtF5zWX9KnjXv3l3jcwF/5Cry4MM/Q/gpkptCmVuZHN0cmVhbQplbmRvYmoKMSAwIG9iago8PC9UeXBlL1BhZ2UvTWVkaWFCb3hbMCAwIDU5NSA4NDJdL1Jlc291cmNlczw8L0ZvbnQ8PC9GMSAyIDAgUi9GMiAzIDAgUj4+Pj4vQW5ub3RzWzQgMCBSXS9Db250ZW50cyA1IDAgUi9QYXJlbnQgNiAwIFI+PgplbmRvYmoKOSAwIG9iago8PC9MZW5ndGggMTU2OS9GaWx0ZXIvRmxhdGVEZWNvZGU+PnN0cmVhbQp4nI1XTW/bRhC961fMoQFUQGH4LdE3N3XToB92Yxc5r8i1vC65y3BJOckPye9L20OQAD4VvfTUN0vSlmi5KAxYIrmcN/PmzYfezN7MAi+hm5nvJX6QpTT9fPViFqUUJqmXhVTNkiQbL8rZ+ewX/L2ZfXPBZ1Z+ShfFzKenYeC5r8++CyhY0cXlbL6+UZouGynXsqUjURvbCkuiLWWrckNvqRZlJVUj7NcX17DhD6aC2Mti/j6n/QeJn3pJPFwMaCEFoUObnE0PGWDHcPe4a69Mc0S/ybJ8tzGmaFR+5eWmOnj6vFtfy7w9ot14Dp78Qb67MU1h/8fRX+tCtPKIQj9MnoXPwiX5R75/FK92Tp9cgGnwHBDfCAh8L+Olt0Jo1S7Px3VdShJ1I63UrSB8dmUrCmOpbVQlbdsIZcl2tWyUwVP66BjftRumXujszuXbGtGKVm2FXcCqtKKhQtCbTuK/Rga3Uhf4KAypsyujJUk8nxr0Yy/tDbY4/kXnSlCBgzIvb7UypA1RJZscblJ+pfQX5xJC3g84XUKqWR/wXaqPqQ+5UNuu3JjusYgrWV65eIEB98mQtOCAIQHfAh3qM3evsHeTMNJk6QUOfo5Mxfd8SOqqkRM2JrR5Kp7i/6MM9W8cJGMKGofesgfNjW5vdSf2BEVWdlQ3CmZQQSOL8I2eg0jhHSYyTLwsmBJpaSP0H+yPpV4gohEV4Qpq2ir7tyMPRatFqbh8F4QyIdYYuIPWRFex5jRCjRfZk3sepjEFyKODn9eAoFdfrZLFcrXWII+T9oWzZYGGrFQIgkH3Yg4zZoyuO32FUNeCiQTtyGirKqfWCWKSIXU9YvW5YMJ342Bj8CFeJNFaL/hK5Chd48IrHDwy++P5yQuPjklWXFyCKqFbuYWQplgrZKzHgiZV4Xzb979Q+sqprTYNiU9/mkl4CeVM5NbYw/lL0sRbRZP8nVpSessUFE7n+Ca2nD9tlbGIgcHMGpyi7XYI/b34xCm1Zg217whVDBWlBw0t6GGMSeDF0VDRQ+VUAv3kroxhZSBqQUYzpejwDXo9ZMoB487Do0h4RVvlkjlFjJae3yNypcCthpPRe2qF6ogrrDU1JS65l6bRkGVPBcBsBfSa68+VYi1uQYgsBdeOmzsI/z1zNq36JAy9tAeGkheE3tKIWlgr4DdTCsM5aCtNzm0GkjEIYYuTdHp2dopq/74TN1J5hATt9KbivulMEf2VFw7k3nWjynAf43rk5nWfrTFJlItbfpoukic0VFUQL5ZQNH3g3FiawMRZNIhoXuBNlE0uuH7l2CHHlgb2wkX8ZOgCqHPwtls+hzUaL1M3ufc0elKtDVzbcd9MGj8JpN9VsrxGOGXn+sli5xUkueVw7hsqci2qaXRp6NYDrvjHO/8H0Obk5nO/GmiLskXkcyO47+rgBZm+46W/O0WMV14QDwoFY+F/MEYnljuIcwzd6DNDo++WPf8CaV93t8AVZmiq5uFUjaPIW454aEbFZDBwexqrDXZKoT+J0RRYvOzQ6Q17hA7X14jCG6Xa9COJi/VSsVMHoIPMi3poV4BIj2ZzYlDknh8YW5eyGYxifJX9tMN6sjXldqjQ16+/ff5gUdpF9ONBTXPX9Q9rLlqtPD99sCCM3QW4oESb0myUk9jvRCCkcRMLSoT+a9eOHiOC5wGLYoNyebgfRMtoXHMQcOPIBh8bSM0tUIz/8tgZ3zQ9VRCFhSKQPkuGNelSovqOJTukqVAWu7KCAYN5izFfdizYKXSSjSsb+8dqkiysfj6f1lIfv3TatXLEp48TuVjniat/SVvzns5Vox7hGUtJtJzw/LMhN/1bVKuEvO0hiTEBPJgaHgEcmr7dSsSLVYp3pT2PKlNw2UxDDZde5rDnQ/kHCZ1h/kjiHxXDVns/G3LcZE4GhTYgfcvtd4fX6UKFfKwbs5gCB5GX9MBo+0OgtLdHjJF9ROWbvGtEX1WF4gY3DCI3IPinj/6H2blTRVULbNoVr4wT4DDLvKAHHlrgZdfC+CONN8T+EU63ZFH/ZXkEN0B34xfbu7yx+PUFxg6bwY4RDztiNJr5ibUpQNGmUw153ujBv6s4a70KZW5kc3RyZWFtCmVuZG9iago3IDAgb2JqCjw8L1R5cGUvUGFnZS9NZWRpYUJveFswIDAgNTk1IDg0Ml0vUmVzb3VyY2VzPDwvRm9udDw8L0YxIDIgMCBSL0YyIDMgMCBSL0YzIDggMCBSPj4+Pi9Db250ZW50cyA5IDAgUi9QYXJlbnQgNiAwIFI+PgplbmRvYmoKMTIgMCBvYmoKPDwvVGl0bGUoYndpbiBmcmVlYmV0KS9QYXJlbnQgMTEgMCBSL05leHQgMTMgMCBSL0Rlc3RbMSAwIFIvWFlaIDIwIDcwMS4xMiAwXT4+CmVuZG9iagoxMyAwIG9iago8PC9UaXRsZShid2luIGZyZWViZXQgOnVwIGJldCBzb25nKS9QYXJlbnQgMTEgMCBSL1ByZXYgMTIgMCBSL05leHQgMTQgMCBSL0Rlc3RbMSAwIFIvWFlaIDIwIDMzMS4yNCAwXT4+CmVuZG9iagoxNCAwIG9iago8PC9UaXRsZShid2luIGZyZWViZXQgOmFwb3N0YXMgYXRsZXRpY28geCBwYWxtZWlyYXMpL1BhcmVudCAxMSAwIFIvUHJldiAxMyAwIFIvTmV4dCAxNSAwIFIvRGVzdFsxIDAgUi9YWVogMjAgNjguMjIgMF0+PgplbmRvYmoKMTUgMCBvYmoKPDwvVGl0bGUo/v8AQQBwAHAAbABlACAAYQBwAHIAZQBzAGUAbgB0AGEAIAByAGUAcwB1AGwAdABhAGQAbwBzACAAdAByAGkAbQBlAHMAdAByAGEAaQBzACAAcwB1AHAAZQByAGkAbwByAGUAcwAgAOAAcwAgAGUAeABwAGUAYwB0AGEAdABpAHYAYQBzACwAIABhAHAAZQBzAGEAcgAgAGQAYQAgAHEAdQBlAGQAYQAgAG4AYQBzACAAdgBlAG4AZABhAHMAIABkAG8AIABpAFAAaABvAG4AZQAgAGUAIABkAGEAIAB0AGUAbgBkAOoAbgBjAGkAYQAgAGQAZQAgAGQAZQBjAGwA7QBuAGkAbwAgAG4AbwAg2D3d3QAgAG0AZQByAGMAYQBkAG8AIABjAGgAaQBuAOoAcykvUGFyZW50IDExIDAgUi9QcmV2IDE0IDAgUi9EZXN0WzcgMCBSL1hZWiAyMCA3NjkuNDYgMF0+PgplbmRvYmoKMTEgMCBvYmoKPDwvVGl0bGUoYndpbiBmcmVlYmV0KS9QYXJlbnQgMTAgMCBSL0ZpcnN0IDEyIDAgUi9MYXN0IDE1IDAgUi9EZXN0WzEgMCBSL1hZWiAyMCA4MDYgMF0vQ291bnQgND4+CmVuZG9iagoxMCAwIG9iago8PC9UeXBlL091dGxpbmVzL0ZpcnN0IDExIDAgUi9MYXN0IDExIDAgUi9Db3VudCA1Pj4KZW5kb2JqCjIgMCBvYmoKPDwvVHlwZS9Gb250L1N1YnR5cGUvVHlwZTEvQmFzZUZvbnQvSGVsdmV0aWNhLUJvbGQvRW5jb2RpbmcvV2luQW5zaUVuY29kaW5nPj4KZW5kb2JqCjMgMCBvYmoKPDwvVHlwZS9Gb250L1N1YnR5cGUvVHlwZTEvQmFzZUZvbnQvSGVsdmV0aWNhL0VuY29kaW5nL1dpbkFuc2lFbmNvZGluZz4+CmVuZG9iago4IDAgb2JqCjw8L1R5cGUvRm9udC9TdWJ0eXBlL1R5cGUxL0Jhc2VGb250L0hlbHZldGljYS1PYmxpcXVlL0VuY29kaW5nL1dpbkFuc2lFbmNvZGluZz4+CmVuZG9iago2IDAgb2JqCjw8L1R5cGUvUGFnZXMvQ291bnQgMi9LaWRzWzEgMCBSIDcgMCBSXT4+CmVuZG9iagoxNiAwIG9iago8PC9UeXBlL0NhdGFsb2cvUGFnZXMgNiAwIFIvT3V0bGluZXMgMTAgMCBSPj4KZW5kb2JqCjE3IDAgb2JqCjw8L1Byb2R1Y2VyKGlUZXh0U2hhcnCSIDUuNS4xMCCpMjAwMC0yMDE2IGlUZXh0IEdyb3VwIE5WIFwoQUdQTC12ZXJzaW9uXCkpL0NyZWF0aW9uRGF0ZShEOjIwMjUwMjI3MDAwMDQ4KzA4JzAwJykvTW9kRGF0ZShEOjIwMjUwMjI3MDAwMDQ4KzA4JzAwJyk+PgplbmRvYmoKeHJlZgowIDE4CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMjA3MCAwMDAwMCBuIAowMDAwMDA0ODkxIDAwMDAwIG4gCjAwMDAwMDQ5ODQgMDAwMDAgbiAKMDAwMDAwMDAxNSAwMDAwMCBuIAowMDAwMDAwMTg4IDAwMDAwIG4gCjAwMDAwMDUxNjggMDAwMDAgbiAKMDAwMDAwMzg0MiAwMDAwMCBuIAowMDAwMDA1MDcyIDAwMDAwIG4gCjAwMDAwMDIyMDUgMDAwMDAgbiAKMDAwMDAwNDgyMyAwMDAwMCBuIAowMDAwMDA0NzEwIDAwMDAwIG4gCjAwMDAwMDM5NzIgMDAwMDAgbiAKMDAwMDAwNDA2NyAwMDAwMCBuIAowMDAwMDA0MTg3IDAwMDAwIG4gCjAwMDAwMDQzMjMgMDAwMDAgbiAKMDAwMDAwNTIyNSAwMDAwMCBuIAowMDAwMDA1Mjg3IDAwMDAwIG4gCnRyYWlsZXIKPDwvU2l6ZSAxOC9Sb290IDE2IDAgUi9JbmZvIDE3IDAgUi9JRCBbPDA5NTVmNGY1NjRmY2Q3ODE0NjVjYjJjYTUyNjk3NGZlPjwwOTU1ZjRmNTY0ZmNkNzgxNDY1Y2IyY2E1MjY5NzRmZT5dPj4KJWlUZXh0LTUuNS4xMApzdGFydHhyZWYKNTQ1MQolJUVPRgo=