Warning: file_put_contents(images/spider/-aposta-sistema-betano-como-funciona-2024-11-03-id-4763.pdf.log): failed to open stream: File too large in /hermes/bosnacweb04/bosnacweb04bg/b1819/sl.leftohio/public_html/kellygoodrich/wp_config.php on line 101
JVBERi0xLjQKJeLjz9MKNCAwIG9iago8PC9TdWJ0eXBlL0xpbmsvUmVjdFs0NjIuMiA0NTkuOTYgNTIyLjkgNDcxLjA2XS9BPDwvUy9VUkkvVVJJKC9zcG9ydC1ncmVlbi1hcG9zdGFzLTIwMjUtMDMtMDEtaWQtNDYwOTguaHRtbCk+Pi9Cb3JkZXJbMCAwIDBdL0NbMCAwIDFdPj4KZW5kb2JqCjUgMCBvYmoKPDwvU3VidHlwZS9MaW5rL1JlY3RbMzYgNDQ1LjU2IDc4LjAyIDQ1Ni42Nl0vQTw8L1MvVVJJL1VSSSgvc3BvcnQtZ3JlZW4tYXBvc3Rhcy0yMDI1LTAzLTAxLWlkLTQ2MDk4Lmh0bWwpPj4vQm9yZGVyWzAgMCAwXS9DWzAgMCAxXT4+CmVuZG9iago2IDAgb2JqCjw8L1N1YnR5cGUvTGluay9SZWN0WzM2IDMyOC43NiAxNjkuNDIgMzM5Ljg2XS9BPDwvUy9VUkkvVVJJKGh0dHBzOi8vd3d3LmRpbWVuLmNvbS5ici9ib251cy1kZS1kZXBvc2l0by1waXhiZXQtMjAyNS0wMy0wMS1pZC0xNDE4NS5odG1sKT4+L0JvcmRlclswIDAgMF0vQ1swIDAgMV0+PgplbmRvYmoKNyAwIG9iago8PC9MZW5ndGggMTcwMC9GaWx0ZXIvRmxhdGVEZWNvZGU+PnN0cmVhbQp4nK1YTW/bRhC961dMcnIBmRFpSZZ9KRzACYoWSZr42MuKXNGbkrv0Lqm4+Yf5F1FzCGKgp7SXnvpml5RkyUycIrABk7uz8/nezNJXg6tBHE3ozWAUTUbxyZR2/758Ojia0vFkEsUJlYPJ5KR7KQavBr/i/OOLQUwj/MQ0ien46Ig3L8rBoycJ8dNicBBHP1y8Hpxf3CUfH+/LJ1+QH8X78kcb+SAIr0fRMcc1niZRQuPpKDoZs/9JEp10rxzBiJ5C/Zu9cwh6PJ5GEz50PItGSff6lUNHyUl0zIfi6Uk0Trr37VNtUBCejaZ0kWHjMJlFM3589CSmZMxBhZhtPjgQlXG1IKdcLUtBc1kLbSg1paFFo1NltODwR5R7h4LCeBqNvMaNHtqXmgab60S2Ire2by3Cz6Mxa/c79/TsMJz6fwrotBI5Nkhep0WjLHZ1/T3UusLUjmazGaXCKW12VXISxwyTtizx7K4UJXH0TbkY7SvfVYmN8U5dXkrXlOa0Ty5u5b4JM3RKj2V5uFQ6MyQMSVevMmUoE47CcUeyvANZrdmNsd9lUfyRG5NZlV5GMPKAftIutXIpDp0kkRsrSFIu9KWkpqT537pxVAmsBkOWtHHkJFZfm9y4+xhdiKWxqjbuwR24viOFDBuJ354kHpwhGz5Jn+CioKoQtVgYi8dMbvLhKmNrtcQj9C2UWMoCkVlZFTjMkmYhLUtWFrn2eVYuomemxyo8Ero2QxJF3mgfvsiMlVBgMlnSQqXITkxpY5VxnCQzt7CCyuZa8S6Kh1/9bymtoYfJ6CGhtCGUqMfoM5QaMSGQHJaXooReLEiXFsLKVNrWShBzroGHfbqe01UjkTMBJ4PVH++TYDKVtBxpT3YzlataFLybwQ3BRiQBUi5FukWlMlFyNT2kewxyGTMP4grnWKlEmKk2hckV+4v3EuUhu4I+E7QrVms4h+eNNZWI6B25Zu5UplZWscIeaz8L9VZqeipKpXPgv5ZWi5oBUNAvdTaE+wujmH2ZyECHku7D0WSUjId92LmuhM6YvsyyOBDKNLU1TC7lJEfsECQi+mAiesH7PmClPbI//iNbQLGFTRuKPcF8MSi3Uup+gm3E2yJ2ogfDwBCYBLcdmK5XBXzi+DxZvgyoNbx3IN0HrucdA+Jw4J7pdYr0BwNUlIzJbU7lgGdBd/TsYK8lGIhNawrf02YmAQ2ABFbQRaReMbOHoHQy8qTvsRijP1pqalWot+ygVwqnC1Uq8CB0UzSRsms+vrqm6TpSROdl12Uw8NhkK95jcKMktCJ5DU5aX52lSW9oIT4yiZhlbdiA2lIU4HT5l1bwDu8cE3uGwl81ovDZtX2lfykRlAQ/uCEtpQ3S5LuT5TVGDxAfnGK1KVMpOIoy+qXY4w6H0cXkcD3B9ozdCx6y8dcNec31NfTbAeJhsITMoe8XcvknhAX3Lom/xW5s09ssmRsefb6rwT7GF1XqGrb7GXZw1jnKvHEbKsA6wpR+wjIQalWZTTdlNHKpgBHXMMS837yCZojcUl/XRBNsipoRtlDcu1gltOMM98WuRZthSBXUomOiWDqVbTf305OHS+YRsWhqOTeFR2If0hSuYmZPSWqsZSX8/uSzLZsC1QXl/Fi6He0QTQYNrQgz4XKFZalBhNre9MHbVB5GmZ97prgUp7RU9Wff49uozobbS2HtMQeCiSJq2Qfj3ZuEqeC5ZdLduksYXSgtQ5G4kBhsmeIHhOB8fG5LfIimzfdfdPs+QNNadYuViM6KT6WfgZXFccVTAQ0jD7OwrQz6QOdwLco5DnTu7N4C93MYhk0AhXQtJubCIaga5KtvtMJqVzxwABO3YdTzGOrLn59TC/GW292muezhf7iF7QzwBFsL6XkLcHc+8QSUr4Hm3iHqiy/9kQDxjjnh5PqG6nsJbOQNMDncNoahW3H72XCvy3+PzfMtPTsxKO1860Ky0C81kyhbByFu35llO2FL70NYjehV3wDhhnGb2tk6ZqYaZ0xnyMT7jhEs0HrHIOlQgu8xYVfwvLI3peqD45ZK5uT7LjdWCj/Bei8A7wjZQ+0EH4MKJwqOlkuy/WWyvituMWNb4A689N7Bl6ZYorhWIW7nk4NOpDy02+HXps4yBnBzDa0Nd69LFsPVKvgLG58gGqbYCt8GPRY9512XW3/rb6CYOem/OELiHGsAHPleIkqOzcrccuz8AEL5qyqovOZvX+n9J11TG+vhhBZgUu4EsMefW/uF+J4fvf3f71/7FPb/z/kPJnjAcwplbmRzdHJlYW0KZW5kb2JqCjEgMCBvYmoKPDwvVHlwZS9QYWdlL01lZGlhQm94WzAgMCA1OTUgODQyXS9SZXNvdXJjZXM8PC9Gb250PDwvRjEgMiAwIFIvRjIgMyAwIFI+Pj4+L0Fubm90c1s0IDAgUiA1IDAgUiA2IDAgUl0vQ29udGVudHMgNyAwIFIvUGFyZW50IDggMCBSPj4KZW5kb2JqCjEwIDAgb2JqCjw8L0xlbmd0aCAyMTM2L0ZpbHRlci9GbGF0ZURlY29kZT4+c3RyZWFtCnicjVhNjxvHEb3vr6jwEhrgTsghlx/rQyApGzmAIynxwr4YMJozzWFbM92j7mnGyL/z0Yf8iIUOwgbYk6KLT3lVM0OvhrvJAgJEcjn9ql69elXNd2fPr8/mS1pPl3Sdn03pfHaRJher/s0iWfDLP/w5pVlK17uz8buoSTVRlZW2jSYdmhu8NwdHuiJVu9AoCiY0ulK01Y2yjjJXOdpFmxlnFW2o0j5TuQuEd1fRu1qRi19c/wjE6QB4/Ky69SZT9DUwrEpI23dR2cY98vVGVdvbigIC+6lWNtf0StEzAPIZuaNXziNouqKfd/zR7+ildr7Q9CcV3qpSvTXf0F+Rl/N0Tld4XB2cfwQqA0ap2++EUVJ4uqRKntXhSypwrteF/iGXk2/eGvvH56CjdHRLEdxUCiRQUbqtKsGQ3Zmbgy4fwWJmvTuoXFGtS0WvX754ralxTV8G2jnX4KTyH3sTal1rX1/StnTFIwcmlyd/2HSVntFsLZWmz7+SzhLRyPgpRb4MpWsCrddrylQw9rReLdxnIFfXZ39jPc6IP5gRdLnaCGp1X4FXYKMsog18tAsTgpJyHbQ9uPKgc+afapdDjm6nvc605+BqbYP68N6Rwtc55vMG2tU+MKMOihEF3oderZKUocdIs4a8ofWd8x9c/39CV8zD/bMZllQIsTKeDjfeqIDK+EohSiGoVoUSkUyGaMs0WQtapnzzSYfz2nNOjZ6QynQICJyQTPRImfC3ykQkGPGv8UA5oClUgTgSegP18qeOSnTZpCNriLdYsxSAB2EVXiFEkEjCidBDAfmA0Wgb5AFMTRafdJRWhDYs4QWfc1srr+iazwgJA6Kig3qmcJd0UNDX92G9ZoRzdLDCed61uT/RW9icuLlQMLCnhjlP18msLSkapDKA5AeQWwyxS/JpOLVrNF6ic2EzMBdpwgrQA8TlZp6sWkTrDpJPHhuUEl8XvgMILJX9gEKBWsNHtg0NyM4mO5ntFCi5zXwUWI7IZNAtzjgY2EKuh9CrTTJvoY/NIXHKM10gkCVK1pgslsq3wFJCAPom1kH4AZWZCaqiAn+yDZTNn542zHKJrk57TUme2V4XUSrZJcM8EpufgUizvbJwUaYhSpmT/sUj6lmAzs1Fq56jTT2jKy/e/peqxqxw9HdXoWKX9C+bGwX506g28oUq2tyNJMNB6ItVmszl4HGFepvQJu0QycOBzDdJuhnI+BXqGjFLTkJBDPXHQGwVmF6Gq8lfuioMS+H/y20YbLpI1gI+nk9JJS+SCR6zoqcy/oT6qjZ3DAhvkWzF3ZRjLjh7d9CcHNdY8+TVMTwcwRBzNk0WLeaw41gSuYLGIIlKeNM5KwlO9MrYImIc1/9BaOhshoB8FA9O/PmaBzmsyrO51l41w0znm2UybVF3ZbxDJm3ofX7yhi3VoyM9fDnAxTIHsbKwvWNbgUW+Ke+sQRUcfavLPV6IgJFx3KIi2Cs43CH0GoOnhQ5aiMRBI3TwPSmxjH9TCrXKGT0s3TmaYz0UDAdMt7XLFAcXsCawaJSFtXIxYfDBlTm3jRchEWmWuqaMu4lfbKZT0B6aW88xTI6pnjjR/GLa+X3GR+XsQFSZ0qDT+9PBCZrWT3ipMxXy7dyx612eq4Z5t2yUkMwB9ZBgW+cYIs6Xrft4bRWz5ch0bcEGxEMXz+GoiwsOZP+pd8Q+GxhfyRMJU5RgjUzDHkuV8+af/DqclCztdoVxcHELbsXeJ7xlHrRniaIRA3EU2ALVh0/HfFTXEn1PWhlHlWvtEpyfsDntdwNZy7C4tRSAktJgS3ukqQZTROTT1nkLAt67z/MfYKabfkNgreO0hF4jmyoGbuJjz/PYzjkJljami4BUTnNQUmce9E5Kexzh7bZQq7sTzFW/JWCLEeFztxfHSj6s9XQ5Ox3y1xFPG3j7BKRUNQyg21xHbRfLQO5mC1ODiEBRG3G7z5utLFv4LNbqJNLFqp/t2IdswKFiQk8b579uS5O5ESu/kv2mN42EvsHrUvWDc4g6T/v5Lr1C3MS51BHLOOa6IKF9eGYja9ZySXt14EIZptP7iHsNXklDjCywg9gpzoDkhaL8NNvZuh/uVSz32ov7FtF4LePV5WqEzDUXGy5XGrtXbTPsb4jSZArb4DaW3XlnuAuhI3wtUKkPmpc90cQJ7nTej/gGrpfL5s0Lpsshu53aenO82bVylFzlQibDiG0gUP+saFN29x/lqd5YkwHsbL3pBDXmcuCBAkXtlgn2ohoHKtm2j33w/Xj0C0ZOb04hehg1X9dsv/Zh62utSNai4eyZrS6OgtJMH1I45tDIrl/z1iSiyTxYixMahajoV8uXTW6uvpDIjy93OIJ9kBdUGPgp4nLai6mOtvg3L5iUJMno+y+o25L4OqEqx2Ou0Lyyg3xcaAN6BHRQd/t1x8HP1gI/QUPs4WO28UMBzxbLXkhiI7zMo/UMbpbw32cBrUoqN9ImuevmIK8Tx+2hEduqO2bDPULPc3UutRhizme9iNofE25ZE92kgx6KqODWzBR837OLGfYe3pukG47uM/kfzT3EnK16BR27/iuVQzL294G+w8WZJfvSvz9/7vmQPS+ONhiZcey3w5zagZFjeAa1ZT+W6gxR0S6dhvhaY2TkIBO5GGK8VbIgTtrNMMhPE6DvhSrvCkhrQl9/xDShNyqiMyWgHPGI6p3HN/YsYSZqALte9zpaTB8erU9yRfFC2JnIjMC4K9VvE/PkPtnr6ClHQ2u4vG9heRO+ytToIMcXa2InCgoSfPQKML1/A1gk04VMF6nJJYjEVdZKq/BPIK5pm8jr0hRIGznB7UoXPu7k9yD5+ekmtAoF1H8BCSk7WAplbmRzdHJlYW0KZW5kb2JqCjkgMCBvYmoKPDwvVHlwZS9QYWdlL01lZGlhQm94WzAgMCA1OTUgODQyXS9SZXNvdXJjZXM8PC9Gb250PDwvRjIgMyAwIFIvRjEgMiAwIFI+Pj4+L0NvbnRlbnRzIDEwIDAgUi9QYXJlbnQgOCAwIFI+PgplbmRvYmoKMTEgMCBvYmoKPDwvTGVuZ3RoIDIwOTUvRmlsdGVyL0ZsYXRlRGVjb2RlPj5zdHJlYW0KeJydWM1y48YRvvMpunySq7SzBEjwR7fdjeyyU84mu0r54ssQGIKjHWCgGYCW/CB5gTxJHiAPIe9BJVfppOSSU76eASktKCuqlLZWIIjB1/P111/36GJ0MUpERj+PxiIbJ8sZDX9/+HY0mVGajEUyoWqUZcvdBzP6OPoLfi5Gb8/4mcV4RmfFaEyvsmUmFvP+Q7Lgi9ffpJSkdLYeHb3p2o11J/RJGXNVWls4nW9Ebquvz86xYPzFuqOP3epc5e0Jycb6VpLXvlWVpJVqZW0JyyytuzrXtpZPvuCP6upn6wr//7/hr00hW3VC6TjNXk9eJzQ9mS5O0vGjh0/PQARoSIhvJAQ65stEgJDq8dZP/UWnbiRJ+mARCRWSPqpCHpN0ZVepGvd+1MZoWdEfpHFXVWPUS8N+DD2fi5Shj7zqqLZbS0ZvnaWV02Yj61YJek8IhbZKW2qcrpR29piqTrfWk7/NO4Pf/KQ/prXViPjUt04WHLSi9x1eVhzAzlKxCLD/rAuNXTGCV6QQON+gwtJ3VXPrgPnBVrwL/LP8Ncn2FhjvrFN4TpGl72XzOXyvLlunsFcy/KCgP1s3xJ0uxDTgVlJ7jq+rqNLmt1pjT/iYK5dLvkizMUnxTgAqScdjKnB9zG9D/gbZm6As0kH6Vqr2pHkrtQUviOe21TnHqwvEDWhb6Vo6pA8R0Fb61tJX39WF9Wvl5FeCfuBICuzy8Xu2Wp5LPDTcVjIXSUxj6fA91hTQwK9IOaCQf0KKthCNZWCqbH3zGfu1q1ZvFcfA+HjSdLmzgRbf4WOrcl2Ez0O8cSrmac9jm2/AN4LDLhuskA6gx3RvFEd8bsOnSrq1rvg3tu94/52TYUMF9KGouoe+vHiS4NkCHjEZEPxmr7K9yKB2SJY2cqUNVwjLyTMVyqt6a81WV5ECldv6X5XOrQfNiAWKCfUCTRwoZjZPxDSAHwHoodRYgxtVQm41ZKiBZuA9nTRcqUHUAhqFGHEfhHOsx2HTMS781yh3Z5GN/vEhbjYX44gbi4piZpEZLGxs+xsnl5wyutTWs7LWGpV4v2aZIYbTzl17Li1Ov1qrUK4cQGE7TjKX0VBHs2kqZhG0ccwaqujplKSZmGeDlLzvrQN1DIJzrHZy7xhU87VtZCmhPVYhve0g0srG4o+l2Chc1/yK1joWTYkiMXRgW7MkEZPswUBe4nxc2y2LP6iAowRGbTuKkRpqUI4gGobWgqYBYraciWVEzDe6Vh7MngOVr6B8QDkla9xcqarHNVy8OWz1JcHZDjH4IegiFVkERXAta5lTXurPVtBphT2UneamgKVt8EP8FJYJZi+UaGa6vnY6CKLfFyH6okPE5H+tfe40ImsOZJ/NFiKJyKWFR9TB4F+0k5ZFDX67IsgcyP+ADkOS15bNRiKyO/jKEDKb9Jo6apRhtWD9HcTNBcx1XNloRlBJ7WXMomIHQQJ2Folu5WMdK/YvlCqWrFho7G9DH8smy52MAiuezq9ZuyCz4wi5UMGlsbk0+hfJd+rPQcp926rYw1zwPVhpiEkdD1gaYqbTnZCepO+tdXZlUagvIvt7uQ3yex4SU1j2DOSbuvyEcvtRttxF38lqZc950ohEMgmuC9J5cBvwpFwQXw89gJyiXHr9PBv/BRwTynBoPaV0oTl16G9Pu850vhTpcFD6hh2iJ/6LphC7ArLZcllsEMU9V8Ja+lwHOYd+H6JRzoXcQSJcSLE7PKGX6WwqFrNd31PVdRsew26KuF77+EYo0fN0dAcqTRRt/Z9Kse9CxSgnbo12n1p8n+tKmuMhXjYW04h3bUq14h7SOl3aGibWujD/SFNaFDFvI1TXQ7cLcu2lSv141XCL5MdQYj3XpA5gJzMxjrDnHXYVm2kYI9DPSxvYvZSFU7/sCg8jDs8XXZ8KRJXL+iYg8QQSrceH0vfIjz8cCacphuAIitaFRkHwJpTf70hhPBXzxUAKj7tzV8XUY4LicHfpZ0ZaG5tiB+bVZY4GzRGvZa4N9Mx7C51AXTYs/jg2DYKdLMdiEgdYvAmIlzbOWbDKreJ2YCTY2c0Ae5X7O7ZRxU3ile9yVQT35tG7hWFj6pYeLv7KD4U3mWdiGfFe4goSIUlMwZpZf9SSnrGUIeAMQ20E3L8VlFqzwcBSdjfgNbIUpy6YrQNTJg6sgv4EVYH8mqm+JShodRsGXaR/hccP0KaYXxf93GH35cROjzqSRsCiQvdjCeeM5EL2PA4IKhwzwuQBfYH3Kvi0tyunWHsy6PKwt04maa+gI11hpNJcvDj1YGoORc1TSGd27es4zHHB9SQLaxNG48gqSw2ewS0mVEacnWFD+ubf6gA2WeyUs3dT7jO2xV6AK+hgsn362DEZ82n8ywLINyq0yxhC4+6bIPmCSQvBQM7oZdyqApm7Bgm9ytDk+TLOLa0Mx5Z95R54YbpAzmLKdCQ4tGbIvoATc5vEiIxOjfsgCC/swFdfhrkNrfORMDCyb1S0ZFmh7P4W1DWEnCNlAZJPbcG7yF/VEAR8mOfpgnPCru4UzMfTI4Z5QncS4yQbHtNgOr7m4ZMPVKyUeDIbYmbIV1RJcLqY2trDbKtgb892rHSK00Pyv44uJxRtYufVELsuJZ3tcDCjWvoh7BcrDo/9t9R0K6P5uDiMPsUpInmYqd4aayu/6twV/XT098n4p69xSg5jb4NzmgPMt510vE8eEC29X3k2NIdm5QpV/85fGIagCU4Ryc4cHw/g90082pc9yMraT35jG/6TjqAzeRlFxPO4KnksLRQPuUDl3bkdx/8F+YsEbAplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjw8L1R5cGUvUGFnZS9NZWRpYUJveFswIDAgNTk1IDg0Ml0vUmVzb3VyY2VzPDwvRm9udDw8L0YyIDMgMCBSPj4+Pi9Db250ZW50cyAxMSAwIFIvUGFyZW50IDggMCBSPj4KZW5kb2JqCjE5IDAgb2JqCjw8L1RpdGxlKM1uZGlhOiBhIGdyYW5kZSBzdXBlcnBvdOpuY2lhIHJlbGlnaW9zYSBlIGZpbG9z82ZpY2EgZGEgRXVy4XNpYSkvUGFyZW50IDE4IDAgUi9EZXN0WzkgMCBSL1hZWiAyMCA3MS44MyAwXT4+CmVuZG9iagoxNSAwIG9iago8PC9UaXRsZShhcG9zdGEgc2lzdGVtYSBiZXRhbm8gY29tbyBmdW5jaW9uYSkvUGFyZW50IDE0IDAgUi9OZXh0IDE2IDAgUi9EZXN0WzEgMCBSL1hZWiAyMCA3MDEuMTIgMF0+PgplbmRvYmoKMTYgMCBvYmoKPDwvVGl0bGUoYXBvc3RhIHNpc3RlbWEgYmV0YW5vIGNvbW8gZnVuY2lvbmEgOnBhZ2JldCBleGNsdWlyIGNvbnRhKS9QYXJlbnQgMTQgMCBSL1ByZXYgMTUgMCBSL05leHQgMTcgMCBSL0Rlc3RbMSAwIFIvWFlaIDIwIDEwMC44NCAwXT4+CmVuZG9iagoxNyAwIG9iago8PC9UaXRsZShhcG9zdGEgc2lzdGVtYSBiZXRhbm8gY29tbyBmdW5jaW9uYSA6c2xvdHMgODg4IGNhc2lubykvUGFyZW50IDE0IDAgUi9QcmV2IDE2IDAgUi9OZXh0IDE4IDAgUi9EZXN0WzkgMCBSL1hZWiAyMCA1NjcuMDMgMF0+PgplbmRvYmoKMTggMCBvYmoKPDwvVGl0bGUoQSBFcmEgZG8gSW1w6XJpbyBSb21hbm86IM1uZGlhLCBhICJwaWEgZG8gbXVuZG8iIHBhcmEgbWV0YWlzIHByZWNpb3NvcykvUGFyZW50IDE0IDAgUi9GaXJzdCAxOSAwIFIvTGFzdCAxOSAwIFIvUHJldiAxNyAwIFIvRGVzdFs5IDAgUi9YWVogMjAgNTE1LjU1IDBdL0NvdW50IDE+PgplbmRvYmoKMTQgMCBvYmoKPDwvVGl0bGUoYXBvc3RhIHNpc3RlbWEgYmV0YW5vIGNvbW8gZnVuY2lvbmEpL1BhcmVudCAxMyAwIFIvRmlyc3QgMTUgMCBSL0xhc3QgMTggMCBSL0Rlc3RbMSAwIFIvWFlaIDIwIDgwNiAwXS9Db3VudCA1Pj4KZW5kb2JqCjEzIDAgb2JqCjw8L1R5cGUvT3V0bGluZXMvRmlyc3QgMTQgMCBSL0xhc3QgMTQgMCBSL0NvdW50IDY+PgplbmRvYmoKMiAwIG9iago8PC9UeXBlL0ZvbnQvU3VidHlwZS9UeXBlMS9CYXNlRm9udC9IZWx2ZXRpY2EtQm9sZC9FbmNvZGluZy9XaW5BbnNpRW5jb2Rpbmc+PgplbmRvYmoKMyAwIG9iago8PC9UeXBlL0ZvbnQvU3VidHlwZS9UeXBlMS9CYXNlRm9udC9IZWx2ZXRpY2EvRW5jb2RpbmcvV2luQW5zaUVuY29kaW5nPj4KZW5kb2JqCjggMCBvYmoKPDwvVHlwZS9QYWdlcy9Db3VudCAzL0tpZHNbMSAwIFIgOSAwIFIgMTIgMCBSXT4+CmVuZG9iagoyMCAwIG9iago8PC9UeXBlL0NhdGFsb2cvUGFnZXMgOCAwIFIvT3V0bGluZXMgMTMgMCBSPj4KZW5kb2JqCjIxIDAgb2JqCjw8L1Byb2R1Y2VyKGlUZXh0U2hhcnCSIDUuNS4xMCCpMjAwMC0yMDE2IGlUZXh0IEdyb3VwIE5WIFwoQUdQTC12ZXJzaW9uXCkpL0NyZWF0aW9uRGF0ZShEOjIwMjUwMzAxMDQ0ODIwKzA4JzAwJykvTW9kRGF0ZShEOjIwMjUwMzAxMDQ0ODIwKzA4JzAwJyk+PgplbmRvYmoKeHJlZgowIDIyCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMjI2MCAwMDAwMCBuIAowMDAwMDA3OTUzIDAwMDAwIG4gCjAwMDAwMDgwNDYgMDAwMDAgbiAKMDAwMDAwMDAxNSAwMDAwMCBuIAowMDAwMDAwMTY2IDAwMDAwIG4gCjAwMDAwMDAzMTQgMDAwMDAgbiAKMDAwMDAwMDQ5MiAwMDAwMCBuIAowMDAwMDA4MTM0IDAwMDAwIG4gCjAwMDAwMDQ2MTIgMDAwMDAgbiAKMDAwMDAwMjQwNyAwMDAwMCBuIAowMDAwMDA0NzM0IDAwMDAwIG4gCjAwMDAwMDY4OTggMDAwMDAgbiAKMDAwMDAwNzg4NSAwMDAwMCBuIAowMDAwMDA3NzQ5IDAwMDAwIG4gCjAwMDAwMDcxNDUgMDAwMDAgbiAKMDAwMDAwNzI2MyAwMDAwMCBuIAowMDAwMDA3NDE1IDAwMDAwIG4gCjAwMDAwMDc1NjMgMDAwMDAgbiAKMDAwMDAwNzAxMiAwMDAwMCBuIAowMDAwMDA4MTk4IDAwMDAwIG4gCjAwMDAwMDgyNjAgMDAwMDAgbiAKdHJhaWxlcgo8PC9TaXplIDIyL1Jvb3QgMjAgMCBSL0luZm8gMjEgMCBSL0lEIFs8NDQ1ZWU5Yzk1NDU5NjdjZGI4MzkyNDkzNjFlYWMxMWM+PDQ0NWVlOWM5NTQ1OTY3Y2RiODM5MjQ5MzYxZWFjMTFjPl0+PgolaVRleHQtNS41LjEwCnN0YXJ0eHJlZgo4NDI0CiUlRU9GCg==